

20th INTERNATIONAL CONGRESS ON IRRIGATION AND DRAINAGE, 13-18 October 2008, Lahore, Pakistan

Agri-environmental indicators for sustainable water management: A proposal for developing countries

Une proposition des indicateurs agro-environnementales pour une gestion soutenable de l'eau dans les pays en voie

de développement

Author, Q.54.1.6: García-Asensio, J. M. [1], San-Sebastián, J. [2] & Hidalgo, M. [3]

[1] PhD in Agricultural Engineering and Master in Environmental Sciences. TRAGSA Group Delegate for Latin America & CYTASA Manager [2] PhD in Biological Sciences [3] Agriculture Engineer. Tragsatec: Area of Rural Engineering. Water Planning & Management Department GRUPO TRAGSA. C/ Julián Camarillo, 6B. 28037 Madrid SPAIN

ABSTRACT: The evident relationship between environmental issues and irrigation in the Mediterranean Region of the EU has been enforced by the change in agriculture policies from productivity to agri-environmental measures. This situation in Spain has been analysed on the basis of a series of specialized reports. Nevertheless the general diagnosis should be based on monitoring programs continuously fed by available, updated and comparable data that can explain all the possible significant effects. A series of indicators for irrigation, categorized by issues and aims, is proposed to attain a real and effective assessment of the irrigation and its environmental links.

SPANISH IRRIGATION: Modernity and tradition

Spain is a country located within the Mediterranean basin where climate conditions make irrigation a central tool in rural development.

Spanish irrigated land is the widest in the UE, covering around 3.8 Mha (7% of the national surface), while occupies the 15th position in the world (6). Only 13% of the cultured area produces the 60% of the National Agrarian Production. Nevertheless, the average water consumption is 6,000 m³/ha, twice the rest of European Mediterranean countries (1).

This unstoppable water need has been crucial to push Spain to get the dams per inhabitant world record and the 6th position in the number of large dams under construction (10). More than 22,500 hm³ of fresh surface water have been yearly abstracted for irrigation purposes in Spain during the last two decades. In the meantime, groundwater abstraction has been harshly reduced from 69% to only 20% during the same period (2). It means Spain uses more than 60% of its gross abstraction for agriculture.

Meanwhile, agriculture must also contend against tourism and urbanism for water rights in the third world destination in international visitors, particularly concentrated in semiarid and coastal regions (3).

Spain is also one of the richest countries in biodiversity of Europe, thanks to the privileged position of the Iberian Peninsula between Eurosiberian and African Regions. The Balearic and Canary Islands raise even more this assortment of flora and fauna species. As a matter of fact, more than 24% of its surface has been included in the UE Natura 2000 Conservation Network (8).

Historically, irrigation has been closely related to Mediterranean civilization rise as natural light and heat conditions induced high crops, always threatened by seasonal rain scarcity (400-600mm). A vast irrigation and drainage net spread all over the Iberian Peninsula as Iberians, Romans and Arabs grew their lands, building a high value heritage from the agricultural, historical, ethnological and environmental point of view (4).

This complex mixture of tradition and modernity can also be found in many developing countries where economical efficiency requirements meet high value nature conservation needs (5).

IRRIGATION INDICATORS

Despite all the assorted reports and the multi-task monitoring, there is yet a large amount of effects that cannot be assessed using a single frame taken now and then. The cumulative and synergic impacts demand a continuous surveillance.

Public participation assures not only that most of the relevant aspects will be monitored, but also the management will be commonly accepted by the involved stakeholders. Further the previously studied issues (biodiversity, water, economy) there are other ones as soil, waste or landscape that also deserve indicator design. After issue selection, an aim agreement must be obtained to guarantee indicator continuity. Stakeholders should be invited to show their opinion.

Surprisingly, even if answers could be completely different, at least the dilemma generally gets a common diagnosis. Too many times, complexity awareness and lack of data have discouraged indicator designers (9). Key characteristics should include not only significance but also data availability and frequent update (7). Nevertheless, as far as it is possible, neither issue nor goal should be left out since the possibility of loosing a precious feature of the whole scenery is not affordable. A series of indicators, categorized by issues and aims, is proposed to attain a real and effective assessment of the irrigation and its environmental links in the next table

CONCLUSIONS

- Core aspects to be monitored are conservation of high value nature areas and water resources management. Interrelated to them, the socio-economic factors control is needed to ensure the sustainability of irrigation activity.
- Unavailability of separately restricted data for rain fed and irrigated agriculture prevents further opportunities of specific agri-environmental indicators for the second kind.
- Among the most significant and highly developed agri-environmental indicators are the categories of water, habitat, biodiversity and social economy.
- The collaboration of farmers can be as important as the improvement of research on environmental issues in the relevant data collection.
- The variability of Spanish irrigation can be a pertinent example to other countries with complex mixture of modern and traditional irrigation embedded in a high biodiversity environment.

ISSUES	AIMS	INDICATORS
IOOOLO	Anvio	EFFECTS OF NITROGEN FERTILIZERS USE ON
WATER	REDUCTION OF THE CONTAMINATION OF GROUND AND SURFACE WATERS	GROUNDWATER QUALITY OVERALL RIVER WATER QUALITY IN LINKED SECTIONS
		SURFACE WATER EUTROPHICATION FROM FERTILIZERS SOURCES
		NUTRIENT BALANCE
	DECLINE OF IMPROPER WATER CONSUMPTION	PUMPING AQUIFER OVER-EXPLOITATION
		IRRIGATION MODERNIZATION AND IMPROVEMENTS WATER USE EFFICIENCY
		WATER OSE LITICIENCY WATER RE-USE AND DESALINATION FOR IRRIGATION
SOIL	REDUCTION OF EROSION AND PROMOTION OF SUITABLE AGRICULTURAL SYSTEMS	SOIL EROSION ON IRRIGATED LAND
		WATER RETENTION CAPACITY
	DECREASE OF THE CHEMICAL, PHYSICAL AND BIOLOGICAL DEGRADATION	ABANDONED LAND FOR SOIL DEGRADATION
HABITATS AND BIODIVERSITY	CONSERVATION OF GENETIC BIODIVERSITY	EX SITU AND IN SITU CONSERVATION OF SPECIES GROWN UNDER IRRIGATION
		LOSS OF GENETIC RESOURCES
		GENETIC MODIFIED IRRIGATED CROPS
	CONSERVATION OF SPECIES RICHNESS	POPULATION CHANGES OF BIO INDICATORS PROTECTED SPECIES UNDER IRRIGATION
	CONSERVATION OF THE BIODIVERSITY OF ECOSYSTEMS	USE OF IRRIGATED HABITATS BY WILD SPECIES
		HABITAT FRAGMENTATION INDEX
	LOGOTOTENIO	CONSERVATION OF HABITATS OF INTEREST TO THE LOCAL COMMUNITY
	CONSERVATION OF HABITAT DIVERSITY	EXISTENCE OF NATURAL WATER PATHWAYS
		WETLANDS ALTERED BY IRRIGATION WETLANDS CONSERVATION
LANDSCAPE	PRESERVATION OF	ROLE OF IRRIGATION INTO THE LANDSCAPE
	AGRICULTURAL LANDSCAPES	CULTURAL CHARACTER
	MONITORING OF THE CHANGES TO THE	CHANGES TO THE GEOMETRY IN IRRIGATION ACTIVITY
	MORPHOLOGY OF THE AGRICULTURAL LANDSCAPE	CHANGES TO LAND SURFACE THROUGH IRRIGATION
CLIMATE CHANGE	PROMOTION OF THE USE OF RENEWABLE ENERGY	CONTRIBUTION OF IRRIGATION TO BIOMASS AND BIO-FUELS PRODUCTION
	REDUCTION OF EMISSION OF GREENHOUSE GASES	GROSS EMISSIONS OF GREENHOUSE GASSES IN IRRIGATION
AGROCHEMICALS	REDUCTION OF ENVIRONMENTAL RISKS CAUSED BY PESTICIDES	PESTICIDE CONSUMPTION IN IRRIGATION
WASTE	REDUCTION OF INORGANIC WASTE GENERATION	RECYCLING OF PLASTIC WASTE AND CONTAINERS
	INCREASE IN ORGANIC WASTE USE	ORGANIC WASTE BALANCE
	ENVIRONMENTAL IMPROVEMENT IN THE IRRIGATION MANAGING PRACTICES	ORGANIC FARMING UNDER IRRIGATION
MANAGEMENT		SURFACE AREA OF IRRIGATION RECEIVING AGRO-ENVIRONMENTAL SUBSIDIES
	INCREASE IN THE ENVIRONMENTAL MANAGEMENT CAPACITY	PUBLIC COST OF THE ENVIRONMENTAL IMPROVEMENT
		LEVEL OF ENVIRONMENTAL TRAINING OF FARMERS USING IRRIGATION
SOCIAL ECONOMY	MAINTAINING PEOPLE IN THEIR RURAL ENVIRONMENT THROUGH IRRIGATION	NEW FARMERS INCORPORATION TO THE
		SECTOR IMPROVING THE SOCIAL STRUCTURE OF THE
		RURAL ENVIRONMENT THROUGH IRRIGATION
		SOCIAL IMBALANCES RELATED TO IRRIGATION

REFERENCES

- 1. Barbero, A. 2006. The Spanish National Irrigation Plan, in OECD, Water and Agriculture: Sustainability, Markets and Policies, Publications Service, Paris,
- EUROSTAT 2005 Agriculture, Forestry And Fisheries Data: Agriculture. Tables. European Commission. Luxembourg. EUROSTAT 2007. Panorama on Tourism. Eurostat statistical books. European Commission. Luxembourg.
- EUROSTAT 2007. Panorama on Tourism. Eurostat statistical books. European Commission. Luxembourg.

 García, E. 2000. Dams in Spain. Thematic Review IV.5: Operation, monitoring and decommissioning of dams. World Commission on Dams. Cape Town (South
- Africa)
 Kirpich P., Z. Fellow, D. Z. Haman & S. W. Styles. 1999. Problems of Irrigation in Developing Countries Journal of Irrigation and Drainage Engineering, Vol. 125,
- No. 1, January/February 1999, pp. 1-6
 6. MAPA 2004, Facts and Figures of Agriculture, Fisheries and Food in Spain, 7th edition, Madrid, SpainMittenzwei, 2007
- Mittenzwei, K.,et al. 2007. Opportunities and limitations in assessing the multifunctionality of agriculture within the CAPRI model Ecological Indicators, Volume 7. Issue 4. November. Pages 827-838
- 8. Nadin, P. 2008. The Mediterranean region: a showcase of biodiversity Issue number 12/2008. EUROSTAT. European Comission
 9. Van der Werf, H. M. G. & Jean Petit. 2002. Evaluation of the environmental impact of agriculture at the farm level: a comparison and analysis of 12 indicator-
- based methods. Agriculture, Ecosystems & Environment, Volume 93, Issues 1-3, December, Pages 131-145

 10. World Commission on Dams. 2000. Dams and development. Earthscan Publications Ltd, London and Sterling, VA http://www.dams.org/report/contents.htm